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Cold dipolar gas milestones

BEC Cr 2005, 2008

Dipolar Fermi KRb 2008

Dipolar Bose KRb 2010

BEC Dy 2011

Fermi Dy 2012

BEC Er 2012

µm/µB
dipolar
contact = gd

g
87Rb 1 0.0064
52Cr 6 0.15
168Er 7 0.38
164Dy 10 1.3
KRb 20
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Dipolar energy
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polarized sample where all dipoles point in the same direction
z (figure 1(b)), this expression simplifies to

Udd(r) = Cdd

4π

1 − 3 cos2 θ

r3
, (2.2)

where θ is the angle between the direction of polarization and
the relative position of the particles. Two main properties of
the dipole–dipole interaction, namely its long-range (∼1/r3)
and anisotropic character, are obvious from (2.1) and (2.2),
and contrast strongly with the short-range, isotropic contact
interaction (1.1) usually at work between particles in ultra-cold
atom clouds.

Long-range character. In a system of particles interacting
via short-range interactions, the energy is extensive in the
thermodynamic limit. In contrast, in systems with long-range
interactions, the energy per particle does not depend only on
the density, but also on the total number of particles. It is easy
to see that a necessary condition for obtaining an extensive
energy is that the integral of the interaction potential U(r)

∫ ∞

r0

U(r) dDr, (2.3)

where D is the dimensionality of the system and r0 some short-
distance cutoff, converges at large distances. For interactions
decaying at large distances as 1/rn, this implies that one
needs to have D < n in order to consider the interaction
to be short range. Therefore, the dipole–dipole interaction
(n = 3) is long range in three dimensions, and short range
in one and two dimensions. For a more detailed discussion,
including alternative definitions of the long-range character of
a potential, the reader is referred to [36].

Anisotropy. The dipole–dipole interaction has the angular
symmetry of the Legendre polynomial of second order
P2(cos θ), i.e. d-wave. As θ varies between 0 and π/2, the
factor 1 − 3 cos2 θ varies between −2 and 1, and thus the
dipole–dipole interaction is repulsive for particles sitting side
by side, while it is attractive (with twice the strength of the
previous case) for dipoles in a ‘head-to-tail’ configuration
(see figures 2(c) and (d)). For the special value θm =
arccos(1/

√
3) % 54.7◦—the so-called ‘magic angle’ used

in high resolution solid-state nuclear magnetic resonance
[37, 38]—the dipole–dipole interaction vanishes.

Scattering properties. Usually, the interaction potential
between two atoms separated by a distance r behaves like
−C6/r6 at large distances. For such a van der Waals potential,
one can show that in the limit of a vanishing collision energy,
only the s-wave scattering plays a role. This comes from the
general result stating that for a central potential falling off
at large distances as 1/rn, the scattering phase shifts δ$(k)

scale, for k → 0, as k2$+1 if $ < (n − 3)/2, and as kn−2

otherwise [39]. In the ultra-cold regime, the scattering is thus
fully characterized by the scattering length a. In the study
of quantum gases, the true interaction potential between the
atoms can then be replaced by a pseudo-potential having the

Figure 2. Two particles interacting via the dipole–dipole
interaction. (a) Non-polarized case; (b) polarized case; (c) two
polarized dipoles side by side repel each other (black arrows);
(d) two polarized dipoles in a ‘head-to-tail’ configuration attract
each other (black arrows).

same scattering length, the so-called contact interaction given
by (1.1).

In the case of the dipole–dipole interaction, the slow decay
as 1/r3 at large distances implies that for all $, δ$ ∼ k
at low momentum, and all partial waves contribute to the
scattering amplitude. Moreover, due to the anisotropy of the
dipole–dipole interaction, partial waves with different angular
momenta couple with each other. Therefore, one cannot
replace the true potential by a short-range, isotropic contact
interaction. This specificity of the dipolar interaction has an
interesting consequence in the case of a polarized Fermi gas:
contrary to the case of a short-range interaction, which freezes
out at low temperature, the collision cross section for identical
fermions interacting via the dipole–dipole interaction does not
vanish even at zero temperature. This could be used to perform
evaporative cooling of polarized fermions, without the need for
sympathetic cooling via a bosonic species.

Dipolar interactions also play an important role in
determining inelastic scattering properties. In particular,
because of its anisotropy, the dipole–dipole interaction can
induce spin–flips, leading to dipolar relaxation. The cross-
section for dipolar relaxation scales with the cube of the dipole
moment [40], and therefore plays a crucial role in strongly
dipolar systems (see section 3.4.1). Dipolar relaxation is
usually a nuisance, but can in fact be used to implement
novel cooling schemes inspired by adiabatic demagnetization
as described in section 3.4.3.

Fourier transform. In view of studying the elementary
excitations in a dipolar condensate, as well as for numerical
calculations, it is convenient to use the Fourier transform of
the dipole–dipole interaction. The Fourier transform

Ũdd(k) =
∫

Udd(r)e−ik·r d3r (2.4)

of (2.2) reads as

Ũdd(k) = Cdd(cos2 α − 1/3), (2.5)

4
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same scattering length, the so-called contact interaction given
by (1.1).

In the case of the dipole–dipole interaction, the slow decay
as 1/r3 at large distances implies that for all $, δ$ ∼ k
at low momentum, and all partial waves contribute to the
scattering amplitude. Moreover, due to the anisotropy of the
dipole–dipole interaction, partial waves with different angular
momenta couple with each other. Therefore, one cannot
replace the true potential by a short-range, isotropic contact
interaction. This specificity of the dipolar interaction has an
interesting consequence in the case of a polarized Fermi gas:
contrary to the case of a short-range interaction, which freezes
out at low temperature, the collision cross section for identical
fermions interacting via the dipole–dipole interaction does not
vanish even at zero temperature. This could be used to perform
evaporative cooling of polarized fermions, without the need for
sympathetic cooling via a bosonic species.

Dipolar interactions also play an important role in
determining inelastic scattering properties. In particular,
because of its anisotropy, the dipole–dipole interaction can
induce spin–flips, leading to dipolar relaxation. The cross-
section for dipolar relaxation scales with the cube of the dipole
moment [40], and therefore plays a crucial role in strongly
dipolar systems (see section 3.4.1). Dipolar relaxation is
usually a nuisance, but can in fact be used to implement
novel cooling schemes inspired by adiabatic demagnetization
as described in section 3.4.3.

Fourier transform. In view of studying the elementary
excitations in a dipolar condensate, as well as for numerical
calculations, it is convenient to use the Fourier transform of
the dipole–dipole interaction. The Fourier transform

Ũdd(k) =
∫

Udd(r)e−ik·r d3r (2.4)

of (2.2) reads as

Ũdd(k) = Cdd(cos2 α − 1/3), (2.5)
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Exchange interaction

Hartree-Fock approximation

〈ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)〉 ≈
Direct/Hartree︷ ︸︸ ︷
n(x)n(x′) +

Exchange/Fock︷ ︸︸ ︷
η|〈ψ̂†(x)ψ̂(x′)〉|2, η = ±1

Including exchange interaction

E =
p2

2m
+ Vtr(x) + 2gn(x) + ΦD(x) + ηΦE (x,p)

W (x,p) =
1

e(E−µ)/kBT − η
ΦD(x) =

∫
dx′Udd(x− x′)n(x′) harder

ΦE (x,p) =

∫
dp′Ũdd(p− p′)W (x,p′) very hard

easy
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Magnetostriction
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What is magnetostriction?

Position
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Momentum
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same scattering length, the so-called contact interaction given
by (1.1).

In the case of the dipole–dipole interaction, the slow decay
as 1/r3 at large distances implies that for all $, δ$ ∼ k
at low momentum, and all partial waves contribute to the
scattering amplitude. Moreover, due to the anisotropy of the
dipole–dipole interaction, partial waves with different angular
momenta couple with each other. Therefore, one cannot
replace the true potential by a short-range, isotropic contact
interaction. This specificity of the dipolar interaction has an
interesting consequence in the case of a polarized Fermi gas:
contrary to the case of a short-range interaction, which freezes
out at low temperature, the collision cross section for identical
fermions interacting via the dipole–dipole interaction does not
vanish even at zero temperature. This could be used to perform
evaporative cooling of polarized fermions, without the need for
sympathetic cooling via a bosonic species.

Dipolar interactions also play an important role in
determining inelastic scattering properties. In particular,
because of its anisotropy, the dipole–dipole interaction can
induce spin–flips, leading to dipolar relaxation. The cross-
section for dipolar relaxation scales with the cube of the dipole
moment [40], and therefore plays a crucial role in strongly
dipolar systems (see section 3.4.1). Dipolar relaxation is
usually a nuisance, but can in fact be used to implement
novel cooling schemes inspired by adiabatic demagnetization
as described in section 3.4.3.

Fourier transform. In view of studying the elementary
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Magnetostriction
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What about bosons?

Position

Fermions n(x)

Momentum

ñ(k)

−ΦE (x, k)

Bosons n(x)

Momentum

ñ(k)

+ΦE (x, k)
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polarized sample where all dipoles point in the same direction
z (figure 1(b)), this expression simplifies to

Udd(r) = Cdd

4π

1 − 3 cos2 θ

r3
, (2.2)

where θ is the angle between the direction of polarization and
the relative position of the particles. Two main properties of
the dipole–dipole interaction, namely its long-range (∼1/r3)
and anisotropic character, are obvious from (2.1) and (2.2),
and contrast strongly with the short-range, isotropic contact
interaction (1.1) usually at work between particles in ultra-cold
atom clouds.

Long-range character. In a system of particles interacting
via short-range interactions, the energy is extensive in the
thermodynamic limit. In contrast, in systems with long-range
interactions, the energy per particle does not depend only on
the density, but also on the total number of particles. It is easy
to see that a necessary condition for obtaining an extensive
energy is that the integral of the interaction potential U(r)

∫ ∞

r0

U(r) dDr, (2.3)

where D is the dimensionality of the system and r0 some short-
distance cutoff, converges at large distances. For interactions
decaying at large distances as 1/rn, this implies that one
needs to have D < n in order to consider the interaction
to be short range. Therefore, the dipole–dipole interaction
(n = 3) is long range in three dimensions, and short range
in one and two dimensions. For a more detailed discussion,
including alternative definitions of the long-range character of
a potential, the reader is referred to [36].

Anisotropy. The dipole–dipole interaction has the angular
symmetry of the Legendre polynomial of second order
P2(cos θ), i.e. d-wave. As θ varies between 0 and π/2, the
factor 1 − 3 cos2 θ varies between −2 and 1, and thus the
dipole–dipole interaction is repulsive for particles sitting side
by side, while it is attractive (with twice the strength of the
previous case) for dipoles in a ‘head-to-tail’ configuration
(see figures 2(c) and (d)). For the special value θm =
arccos(1/

√
3) % 54.7◦—the so-called ‘magic angle’ used

in high resolution solid-state nuclear magnetic resonance
[37, 38]—the dipole–dipole interaction vanishes.

Scattering properties. Usually, the interaction potential
between two atoms separated by a distance r behaves like
−C6/r6 at large distances. For such a van der Waals potential,
one can show that in the limit of a vanishing collision energy,
only the s-wave scattering plays a role. This comes from the
general result stating that for a central potential falling off
at large distances as 1/rn, the scattering phase shifts δ$(k)

scale, for k → 0, as k2$+1 if $ < (n − 3)/2, and as kn−2

otherwise [39]. In the ultra-cold regime, the scattering is thus
fully characterized by the scattering length a. In the study
of quantum gases, the true interaction potential between the
atoms can then be replaced by a pseudo-potential having the

Figure 2. Two particles interacting via the dipole–dipole
interaction. (a) Non-polarized case; (b) polarized case; (c) two
polarized dipoles side by side repel each other (black arrows);
(d) two polarized dipoles in a ‘head-to-tail’ configuration attract
each other (black arrows).

same scattering length, the so-called contact interaction given
by (1.1).

In the case of the dipole–dipole interaction, the slow decay
as 1/r3 at large distances implies that for all $, δ$ ∼ k
at low momentum, and all partial waves contribute to the
scattering amplitude. Moreover, due to the anisotropy of the
dipole–dipole interaction, partial waves with different angular
momenta couple with each other. Therefore, one cannot
replace the true potential by a short-range, isotropic contact
interaction. This specificity of the dipolar interaction has an
interesting consequence in the case of a polarized Fermi gas:
contrary to the case of a short-range interaction, which freezes
out at low temperature, the collision cross section for identical
fermions interacting via the dipole–dipole interaction does not
vanish even at zero temperature. This could be used to perform
evaporative cooling of polarized fermions, without the need for
sympathetic cooling via a bosonic species.

Dipolar interactions also play an important role in
determining inelastic scattering properties. In particular,
because of its anisotropy, the dipole–dipole interaction can
induce spin–flips, leading to dipolar relaxation. The cross-
section for dipolar relaxation scales with the cube of the dipole
moment [40], and therefore plays a crucial role in strongly
dipolar systems (see section 3.4.1). Dipolar relaxation is
usually a nuisance, but can in fact be used to implement
novel cooling schemes inspired by adiabatic demagnetization
as described in section 3.4.3.

Fourier transform. In view of studying the elementary
excitations in a dipolar condensate, as well as for numerical
calculations, it is convenient to use the Fourier transform of
the dipole–dipole interaction. The Fourier transform

Ũdd(k) =
∫

Udd(r)e−ik·r d3r (2.4)

of (2.2) reads as

Ũdd(k) = Cdd(cos2 α − 1/3), (2.5)
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Dipolar instability

[9]. The reduction of a close to B0 !! is accompanied by
inelastic losses. By measuring the 1=e lifetime and the
density of the BEC close to resonance, we estimate the
three-body loss coefficient to be constant for the range of
scattering lengths (5 < a=a0 < 30) studied here, with a
value L3 " 2# 10$40 m6=s.

To study the collapse dynamics, we first create a BEC
of typically 20 000 atoms in a trap with frequencies
%!x;!y;!z&’ %660;400;530&Hz at a magnetic field "10 G
above the Feshbach resonance, where the scattering length
is a ’ 0:9abg. We then decrease a by ramping down B line-
arly over 8 ms to a value ai ' 30a0 which still lies well
above the critical value for collapse, measured to be at
acrit ’ %15( 3&a0 [shaded area on Fig. 1(a)] for our pa-
rameters [9]. This ramp is slow enough to be adiabatic
( _a=a) !x;y;z), so that the BEC is not excited during it.
After 1 ms waiting time, a is finally ramped down rapidly
to af ' 5a0, which is below the collapse threshold. For
this, we ramp linearly in 1 ms the current I%t& in the coils
providing the magnetic field B'"I. However, due to eddy
currents in the metallic vacuum chamber, the actual value
of B%t& and hence that of a%t& change in time as depicted in
blue on Fig. 1(a). To obtain this curve, we used Zeeman
spectroscopy to measure the step response of B%t& to a jump
in the current I%t& (corresponding to a"15 G change in B),
and found that the resulting B%t& is well described if # _B!
B ' "I%t& holds, with # ’ 0:5 ms. From this equation and
the measured I%t& we determine the actual a%t&.

After the ramp, we let the system evolve for an adjust-
able time thold and then the trap is switched off. Note that
the origin of thold corresponds to the end of the ramp in I%t&.
Because of eddy currents, thold ' 0 about 0.2 ms before the

time at which the scattering length crosses acrit. However,
as we shall see below, even for thold < 0:2 ms a collapse
(happening not in trap, but during the time of flight) is
observed, since during expansion the scattering length
continues to evolve towards af . The large magnetic field
along z is rapidly turned off (in less than 300 $s) after 4 ms
of expansion, and the condensate expands for another 4 ms
in an 11 G field pointing in the x direction, before being
imaged by absorption of a resonant laser beam propagating
along x. Changing the direction of the field allows us to use
the maximum absorption cross section for the imaging (if
the latter was done in high field, the absorption cross sec-
tion would be smaller, thus reducing the signal to noise
ratio of the images). We checked that this fast switching
has no influence on the condensate dynamics. We observe
that the atomic cloud has a clear bimodal structure, with a
broad isotropic thermal cloud, well fitted by a Gaussian,
and a much narrower, highly anisotropic central feature,
interpreted as the remnant BEC [see Figs. 1(b) and 1(c)].

The upper row of Fig. 1(d) shows the time evolution of
the condensate when varying thold. The images were ob-
tained by averaging typically five absorption images taken
under the same conditions; the thermal background was
subtracted, and the color scale was adjusted separately for
each thold for a better contrast. From an initial shape
elongated along the magnetization direction z, the conden-
sate rapidly develops a complicated structure with an ex-
panding, torus-shaped part close to the z ' 0 plane.
Interestingly, the angular symmetry of the condensate at
some specific times (e.g., at thold ' 0:5 ms) is reminiscent
of the d-wave angular symmetry 1$ 3cos2% of the DDI.
For larger values of thold, we observe that the condensate
‘‘refocuses’’ due to the presence of the trap [17].

FIG. 1 (color). Collapse dynamics of
the dipolar condensate. (a) Timing of
the experiment. The red curve represents
the time variation of the scattering length
a%t& one would have in the absence of
eddy currents, while the blue curve is
obtained by taking them into account
(see text). (b) Sample absorption image
of the collapsed condensate for thold '
0:4 ms, after 8 ms of time of flight,
showing a ‘‘cloverleaf’’ pattern on top
of a broad thermal cloud. This image was
obtained by averaging 60 pictures taken
under the same conditions. (c) Same
image as (b) with the thermal cloud
subtracted. In (b) and (c) the field of
view is 270 $m by 270 $m. The green
arrow indicates the direction of the mag-
netic field. (d) Series of images of the
condensate for different values of thold
(upper row) and results of the numerical
simulation without adjustable parameters
(lower row); the field of view is 130 $m
by 130 $m.
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Dipolar quantum gases
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Figure 9. Intuitive picture for the geometry-dependent stability of a trapped dipolar BEC. (a) In a prolate (cigar-shaped) trap with the
dipoles oriented along the weak confinement axis of the trap, the main effect of the dipole–dipole interaction is attractive, which leads to
an instability of the condensate. (b) In an oblate (pancake-shaped) trap with the dipoles oriented along the strong confinement axis, the
dipole–dipole interaction is essentially repulsive, and the BEC is stable.

with the kinetic energy

Ekin = Nh̄ω̄

4

(
2
σ 2

ρ

+
1
σ 2

z

)

, (5.6)

the potential energy due to the trap

Etrap = Nh̄ω̄

4λ2/3
(2σ 2

ρ + λ2σ 2
z ) (5.7)

and the interaction (contact and dipolar) energy

Eint = N2h̄ω̄add√
2πaho

1
σ 2

ρ σz

(
a

add
− f (κ)

)
. (5.8)

The dipolar contribution in the last part is most easily
calculated in momentum space as

Edd = 1
2

∫
n(r)n(r′)Udd(r − r′) d3r d3r ′

= 1
2(2π)3

∫
Ũdd(k)ñ2(k) d3k, (5.9)

where ñ(k) is the Fourier transform of the density distribution
(and therefore, in this case, still a Gaussian). In (5.8), κ =
σρ/σz is the aspect ratio of the cloud (which differs from that
of the trap due to the elongation induced by the dipole–dipole
interaction as discussed above), and f is given by

f (κ) = 1 + 2κ2

1 − κ2
− 3κ2artanh

√
1 − κ2

(1 − κ2)3/2
. (5.10)

The function f (κ), displayed in figure 10, is monotonically
decreasing, has asymptotic values f (0) = 1 and f (∞) = −2
and vanishes for κ = 1 (implying that for an isotropic density
distribution the dipole–dipole mean-field potential averages to
zero).

To determine the stability threshold acrit(λ), one needs
to minimize (5.5) with respect to σρ and σz for fixed values
of N , λ and ω̄. For a > acrit , one has a (at least local)
minimum of energy for finite values of σρ,z, while as soon
as a < acrit , no such minimum exists. Figure 11 shows
contour plots of E(σρ, σz) for N = 20 000, λ = 10 and
different values of a, clearly showing that acrit(10) ≃ −8.5 a0

for the chosen parameters. In figure 13, the critical scattering
length acrit(λ) obtained in this way is shown as a thick line
for ω̄ = 2π × 800 Hz and N = 20 000 atoms. In the limit
N → ∞, the asymptotic behavior of this curve (a∞

crit(0) = add

and a∞
crit(∞) = −2add) can be easily understood, as only the

sign of the interaction term (5.8) (which scales as N2 and

Figure 10. The function f (x) entering the calculation of the dipolar
mean-field energy.

not as N like the kinetic and potential energy) determines the
stability. For an extremely pancake-shaped trap λ → ∞, the
cloud has an aspect ratio κ → ∞, and, as lim

x→∞
f (x) = −2,

the condensate is (meta-)stable only if a > −2add. In the
same way, one readily understands that for λ → 0, the critical
scattering length is add. The minimal value of λ for which
a purely dipolar condensate (a = 0) is stable is the one
for which κ = 1 and is found numerically to be close to
λ ≃ 5.2 [56, 93, 96, 101, 102].

In [102], the influence of the trapping geometry on the
stability of a 52Cr BEC was investigated experimentally. A
combination of an optical dipole trap and one site of a
long period (7 µm) optical lattice provided an harmonic trap
cylindrically symmetric along the z-direction (along which
the dipoles are aligned), with an aspect ratio λ that could
be varied over two orders of magnitude (from λ ≃ 0.1—
prolate trap—to λ ≃ 10—oblate trap—), while keeping the
average trap frequency ω̄ = (ω2

ρωz)
1/3 almost constant (with

a value of 2π × 800 Hz). Using the Feshbach resonance at
589 G, the scattering length was ramped adiabatically to a
final value a and the atom number in the BEC was measured.
A typical measurement is shown in figure 12. When a is
reduced, the atom number decreases, first slowly, and then
very abruptly when a approaches a critical value acrit , below
which no condensate can be observed. Figure 13 shows the
measured value of acrit as a function of λ. One clearly observes
that for prolate traps, acrit is close to add, as expected from
the discussion above, while for the most pancake-shaped trap
λ = 10 the critical scattering length is close to zero: for such
a geometry, a purely dipolar condensate is stable. The solid
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Effect of exchange interaction on stability

∂n(x)

∂µ
=

nµ(x)

1 + [2g − Cdd/3− Cddξη(x)]nµ(x)
,

where we have defined

nµ(x) ≡
∫

dk

(2π)3
Wµ(x, k),

ξη(x) ≡ −η
∫

dk

(2π)3

Wµ(x, k)

nµ(x)

∂ΦE (x, k)

Cdd∂n(x)
,

∂ΦE (x, k)

∂n(x)
= [1− Cddξη(x)nµ(x)]

∫
dk′

(2π)3
Ũdd(k− k′)

Wµ(x, k′)

nµ(x)

− η
∫

dk′

(2π)3
Ũdd(k− k′)Wµ(x, k′)

∂ΦE (x, k′)

∂n(x)
.

Danny Baillie Dipolar quantum gases



T/T 0
F

(a)

D
t

0 0.2 0.4 0.6 0.8 1
0

5

10

15

λ = 10

λ = 1

λ = 0.1

Baillie, Bisset, and Blakie, “Stability of a trapped dipolar quantum gas”, Phys. Rev.

A 91, 013613 (2015)

Danny Baillie Dipolar quantum gases

http://dx.doi.org/10.1103/PhysRevA.91.013613
http://dx.doi.org/10.1103/PhysRevA.91.013613


Grids

Position grids Cosine-Hankel (ρ, z): 200× 200

Momentum grids Spherical (pr , pθ): 300× 30

Almost 2.9GB to store 4D grid
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Matlab on Pan

Licence

Parallel options:

Built-in for FFT, eigenvalues, matrix multiply, sort
Different assumptions as different tasks
parfor
Distributed Computing Server
openMP in mex
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