
Autonomic Cloud

Provisioning For Scientific

Workflows
Ryan Chard

Victoria University of Wellington

Science in the Cloud

Science in the Cloud

Taverna

The Globus Galaxies Platform

A platform for creating cloud-hosted Science as a

Service gateways:

 Galaxy to create, manage, execute, share workflows

 Globus for data and identity management

 HTCondor for job scheduling and execution

 AWS for executing analyses

 Spot instances

 Elastic provisioner

20 gateways, 300+ researchers

Globus Genomics Usage

urces

Cloud Provisioning Challenges:

 Naïve use can be expensive and limit performance

 38 instance types, multiple regions and availability zones

 Compute/memory/network/GPU optimised

 Different pricing models (On-demand, spot, reserved)

 Differing tool requirements

 Technical challenges

 Instance setup, tools, dependencies, termination

 Autoscaling/resource management

A Globus Galaxies Gateway

Worker

Worker

Instance
Provisioning

Galaxy

Cost-aware

provisioner
Globus

Provisioning

History
Tool Profiles

NFS

HTCondor
Queue

Worker

Provisioning System

Worker

Worker

Instance
Provisioning

Galaxy

Globus

Provisioning

History

NFS

HTCondor
Queue

Worker

Cost-aware

provisioner

Tool Profiles
Provisioning

History

Improving the Cloud Provisioner

 Simplify cloud usage

 Make it cheaper and faster

 Monitor arbitrary queues to acquire resources and fulfil workloads

Applications

Platform

Provisioning
Service

Cost Analysis

Tool Profiling

Smarter Cloud Use

 Broaden search scopes

 Use many instance types and all AZs

 Use profiles to match workloads to

instances

 Encode memory, CPU, and disk

requirements in ClassAds etc.

 Evaluate spot market prices

 All availability zones (AZs) and all suitable

instance types

 Self termination

 Over-provision requests

 Request more resources than needed

 Repurpose excess spot

requests

 Migrate requests to idle jobs

 Revert to on-demand

Cost Throughput

Platform

Provisioning
Service

Cost Analysis

Cost-aware Provisioning Approach

1. Filter instance types with profiles

2. Determine price for each instance
type across all AZs

3. Rank potential requests

4. Make requests and monitor

5. Cancel or repurpose excess active
requests once one is fulfilled

$$$

???

Evaluation

Six production GG gateways

 Galaxy/Condor logs + spot price

history

 145 day period

Evaluation by mapping jobs to AWS spot

price history

Single Instance,
Single AZ (SI-
SAZ)

Single Instance,
Multi AZ (SI-
MAZ)

Multi Instance,
Single AZ (MI-
SAZ)

Multi Instance,
Multi AZ (MI-
MAZ)

Four provisioning scopes

Cost-aware Results

Cost/Day

Cost-aware Results

Increasing the search scope to include multiple instance
types and availability zones results in cost savings between
43% and 95% per gateway

Overall reduction in cost of 92.1%

The difference between MI-SAZ and MI-MAZ less than 1%

$27,686.99 $23,321.29 $2,259.36 $2,200.24

SI-SAZ SI-MAZ MI-SAZ MI-MAZ

Profiling Application

Executions

 Predict execution time and cost

 Enable co-allocation of jobs

 Minimise monetary cost of execution

 Maximise performance

Applications

Provisioning

Service

Tool Profiling

 Matching tools to resources

 AWS is flexible

 38 instance types

 We need a way to determine resource

usage

 Identify suitable instance types

 Trial and error is tedious

What Why

How

 A profiling service!

Profiler

1. Submit

profiling request 5. Return profiles

Worker

Worker web
service

PCP HTCondor

2. Provision

workers

3. Start/monitor profiling

Worker

W orker w eb service

PCP HTCondor

Worker

W orker w eb service

PCP HTCondor

Worker

W orker w eb service

PCP HTCondor

4. Parse PCP

log and store

profiles

A Cloud Tool Profiling Service

1. Describe profile requests in

JSON

2. Provision resources and apply

a profiling Web Service

3. Use Performance Co-pilot

(PCP) to capture usage

4. Capture and process PCP logs

5. Return profiles as JSON (or logs

via s3)

Evaluation

 10 instance types

 Instance storage (not EBS)

 Five Globus Genomics tools

 Range from 20-90 minute exec time

 Account for 17.7% of total compute across four gateways

 Capture:

 Execution time, CPU utilisation, memory utilisation, disk, and network

 Assess impact on cost

c3.2xlarge

c3.4xlarge

c3.8xlarge

g2.2xlarge

g2.8xlarge

r3.xlarge

r3.2xlarge

r3.4xlarge

r3.8xlarge

m3.2xlarge

BWA ALN

FASTQC

Bowtie

MarkDups

BWA MEM

BWA ALN

FASTQC

Bowtie

MarkDups

BWA MEM

Tools Instances Profiles

Execution Time

BWA MEM BWA ALN

Utilisation (Bowtie)

CPU Memory

Spot Instance Price

 A dataset of 2000 production jobs

from GG gateways

 Use submission time and AWS spot

price history to determine price per

instance type

 Adaptive fastest, slowest, cheapest,

costliest = quickest, slowest,

cheapest, most expensive instance

types

 Globus Genomics = naïve
instance/zone selection

Provisioning as a Service

 A service to acquire and manage cloud resources

 Gateways subscribe to the service

 Combines profiles and cost-aware techniques

 Monitor a queue (HTCondor/Spark) and provision resources on

demand

Applications

Platform

Provisioning
Service

Cost Analysis

Tool Profiling

The Globus Galaxies Platform

Worker

Worker

Instance
Provisioning

Galaxy

Cost-aware

provisioner
Globus

Provisioning

History
Tool Profiles

NFS

HTCondor
Queue

Worker

Instance
Provisioning

RDS

Provisioning
History

Tool

Profiles

Galaxy

Globus

NFS

HTCondor

Queue

Worker

Worker

Worker

Cost-aware

provisioner
HTCondor

Queue

A Provisioning Service

Cost-aware

provisioner
HTCondor

Queue

Cost-aware

provisioner
HTCondor

Queue

Instance
Provisioning

RDS

Provisioning

History

Tool Profiles

Cost-aware

provisioner
HTCondor

Queue

Galaxy

Globus

NFS

HTCondor

Queue

Worker

Worker

Worker

Galaxy

Globus

NFS

HTCondor

Queue

Worker

Worker

Worker

Galaxy

Globus

NFS

HTCondor

Queue

Worker

Worker

Worker

Provisioning Architecture

Evaluation

 Tune configurable parameters and see how it

changes performance

 Run rate, idle requirement, repurpose

requests, resource restrictions

 A reproducible dataset of production GG
workloads (busiest days from 5 gateways)

 1000 jobs (total ~8500 in 24 hours)

 ~3.5 hours of jobs

 ~8 hours execution duration

 Transform exec time (sleep) by instance type

 Monitor number of requests, fulfilled

instances, and cost to fulfil workload

Average Wait Per Job

 Dashboard like configuration

 AZ=1: single availability zone

 IR: Idle requirement of jobs before

resources are provisioned

 Re: Whether or not requests are

repurposed once orphaned

 RR: Run rate, or interval between
provisioning rounds

 Base: base case (Re=T, RR=5,

IR=120,AZ=All)

Instances and Cost

Summary

 Using the cloud naïvely can increase costs and decrease

performance

 There are simple techniques that can substantially reduce

the cost of using the cloud

 Matching tools to resources is essential for effective cloud

use

 The provisioning service and profiler are available on github

Thanks!

 Questions?

