Satellite image processing in a HPC environment

Markus Müller, James Shepherd, Sam Gillingham

Landcare Research Manaaki Whenua

Agenda

- The data explosion in earth observation
- Short intro to satellite remote sensing
- Examples implemented on Pan cluster
 - Pre-processing of Landsat images
 - MODIS land surface temperature analysis
 - Woody patches / LCDB improvement
- Conclusions

The ESA Earth Observation Satellite Fleet

source: http://www.slideshare.net/Space-Applications/earth-observation-duevae

1972: Madrid as seen by Landsat-1:60 m resolution; 4 spectral bands

2014: Madrid airport as seen by Worldview-3 (2014): 31cm resolution; 28 spectral bands

The "data explosion" in earth observation

- More satellites
- Higher resolution
- More data publicly available

source: http://bunjilforestwatch.net/learn/forest-monitoring-sytems/remote-sensing/

Example 1: Automated processing of Landsat images

- Landsat series consists until now of 7 satellites (Landsat 1-5, 7-8; 6 didn't make it into orbit)
- Complete archive is made publicly available
- Longest complete record: from 1972 to now
- Mid-resolution (between 15 and 30 m) in the optical spectral range

Workflow

Implementation details

- 4252 landsat images processed so far; overall data volume 11.05 TB
- Batch level parallelization implemented using python, GDAL and SLURM

Example 2: MODIS Land Surface Temperature of the Antarctic

- MODIS programme consists of two satellites: Aqua and Terra
- Low spectral resolution: 1km
- Provides a number of derived products, e.g. land surface temperature (LST) datasets
- Complete time series from 2003 to 2014 was processed for the Antarctic
- Batch level parallelization using Python, GRASS and SLURM

Workflow

Mean Annual Surface Temperature (oC)

Example 3: Improvement of the NZ Land cover database

- Land Cover DataBase (LCDB) of New Zealand is a multi-temporal, digital thematic map of land cover and land use
- Mainly created by manual interpretation and digitization of SPOT satellite images
- Many small woody patches on pasture background are unmapped – this is what we wanted to improve

Lidar CHM

Woody patches Wellington region

Results

Region	Woody Sites	Total Area (ha)
Northland	10271/1820	21478/2892
Auckland	4430/1124	8865/1771
Waikato	5753/1565	10635/2441
Bay of Plenty	2443/466	5043/749
Gisborne	4168/1120	8727/1950
Hawke's Bay	5235/1198	11060/1978
Manawatu-Wanganui	7437/2366	14335/3831
Taranaki	2775/741	5492/1197
Wellington	4139/1473	8033/2408
Tasman	2237/230	4889/399
Nelson	105/14	201/22
Marlborough	1647/394	3568/688
Canterbury	6461/2153	13482/3644
West Coast	1619/155	3704/262
Otago	2928/1011	5744/1625
Southland	2629/1010	5766/1688
Total	64277/16840	131022/27545

Implementation details

- Batch level parallelization (based on NZ regions) implemented using python, GDAL and SLURM
- Support Vector Classification using scikit-learn

Conclusion

- Processing and analysis of satellite images is a "Big Data" problem
- The NeSI Pan cluster helps us immensely in our analyses, but...
- requirements are different from other use cases:
 - Operations are very I/O intensive
 - For most problems batch level parallelism offers the best solution
 - Need to store large amounts of data

Thank you!