Sifting the Needles in the Haystack: Permutation Resampling Biological Pathways in Cancer Genomic Interaction Data

Tom Kelly

Bryony Telford & Augustine Chen (experimental data)
Mik Black & Parry Guilford (PhD supervisors)

Genetics - Synthetic Lethality

Genetics - Synthetic Lethality

- ► Cell death due to inactivation of two (or more) non-essential genes
 - ▶ Loss of a shared function being lethal implies functional redundancy
 - Conserved between pathways more than individual genes

(cc) AthenaPendergrass Wikipedia

Genetics - Synthetic Lethality

- ► Cell death due to inactivation of two (or more) non-essential genes
 - ▶ Loss of a shared function being lethal implies functional redundancy
 - Conserved between pathways more than individual genes

Rehman et al. (2010) Nature Reviews Clinical Oncology 7, 718-724

Genomics - Targeted Cancer Therapy

- An appealing strategy for anti-cancer drug design
 - Specificity against genetic abnormality (even loss of function)
 - ▶ We expect low adverse effects compared to chemotherapy
 - Enables wider use of targeted therapy
 - Drugs specific against molecular changes identified by Genetics/ Genomics
 - ► Has been shown to be a clinically applicable strategy
 - ▶ e.g., olaparib (BRCA mutation, PARP inhibitors) successful clinical trials

http://www.oncology-central.com/2014/12/15/

Cancer Genomics - Data Sources

National Cancer Institute

National Human Genome Research Institute

TCGA Home | Contact Us | For the Media

Genomic Screen - Experimental Data

- Until recently limited to a candidate approach
 - Based on known functions and studies in other species
- Screening for Synthetic Lethality has become a popular in cancer cell culture
 - Uses "RNA interference" to knockout gene expression: screening for mutant-specific cell death
 - Combined with drug compound testing for cancer drug screening
 - Other refined gene knockdown approaches in development (e.g., CRISPR 'genome editing')
- Experimental screening (and validation) is costly, laborious, and prone to false positives
 - ▶ We are investigating bioinformatics analysis to assist the drug target triage process

E-cadherin (CDH1) - Example Gene

- ► E-Cadherin (encoded by the *CDH1* gene) is a cell-to-cell signalling and cell structure protein
 - ► Tumour suppressor (loss linked to cancer onset and progression)
- Hereditary Diffuse Gastric Cancer (Familial cancer syndrome)
 - ► High risk and early onset diffuse gastric cancer and lobular breast cancer
 - Current monitoring or surgery options have significant risk of patient harm
- ► The Cancer Genetics Lab has an ongoing project aiming to design safe drugs suitable for early stage treatment and preventative use in outwardly healthy HDGC patients / mutation carriers

E-cadherin (CDH1) - Example Gene

SLIPT - Prediction Method

- Synthetic Lethal Interaction Prediction Tool (SLIPT)
 - Score patients as low, medium or high expression for each gene (3-quantiles)
 - Chi-Square test gives significance for relationship between expression of 2 genes
 - Correct p-values for multiple tests (False Discovery Rate)
 - Score Synthetic Lethality as directional changes in expression as shown below:

		Candidate Gene (e.g. SVIL)			
		Low	Medium	High	
Query Gene (e.g. <i>CDH1</i>)	Low	Observed less than expected		Observed more than expected	
	Medium				
	High				

Methods - Pathway Prediction Workflow

▶ 1) Source data from database (and check for quality): TCGA/ICGC data portals

> 2) Predict Synthetic Lethal gene partners: SLIPT for *CDH1* in breast cancer

> 3) Gene Set over-representation analysis: ReactomeDB pathway enrichment

SLIPT - Enriched Pathways for CDH1

Correlation Matrix: **Voom Normalised** Plot z-transformed Correlation Distance Complete Linkage

Figure Legend

Enriched **Pathways**

833

GPCR (B/2), Chaperones, Muscle Contraction, Fatty Acid Metab, G protein K+ channels, $G\alpha(s)$, RAS, TGFB, ERK, IL-6, GABAB

translation, TCA, Transcription, Le EFGR, Infection, Antigen

בא, אט-1, IFNγ,
eptide=ligand, GPCR (A/1), eptide=ligand, GR, IL max

GPCR Ligand, GPCR (A/1), $G\alpha(s)$, Muscle contraction, Homeostasis, Metab (ph 1), Ethanol, Develop, platelet, IGF, $G\alpha(i)$, $G\alpha(g)$, P2Y

Results so far

- Synthetic Lethal interactions are common across the Human Genome (used NeSI Pan cluster)
 - Consistent with scale-free networks observed in other species
- Expression of synthetic lethal partners across a patient cohort divides into several correlated clusters with:
 - Distinct functions
 - ► Highly expressed in different patient groups

SLIPT - Comparison to siRNA Genes

Resampling - Permutations for Pathways

- The intersection between SLIPT and siRNA results is enriched for many of the same pathways as in the experimental siRNA data
 - ▶ Even though this differs greatly from the SLIPT results overall
 - Is this good news?
 - Or would we expect this by chance?
 - Can we explain why they overlap so poorly with siRNA hits?
- Permutation / Bootstrapping / Re-Sampling
 - ► The idea is to randomly sample / shuffle genes and to generate a test statistic distribution we would expect by chance
 - ► Then we can test whether genes are behaving as expected by chance or are we surprised by them

Resampling - Permutations for Pathways

- ► A random sample of the total observed size for predicted genes
 - e.g, 3576 genes predicted
- The intersection with siRNA candidates is derived from the random sample
 - Does not assume that the size of the intersection is fixed at the observed size
 - Size is not predetermined as and generates an expected intersection size
 - Observed intersection of 450 genes
- Test each sample for pathway enrichment
 - e.g., all 1652 Reactome pathways
- Rinse, repeat to generate an expect distribution (null hypothesis)

Re-sampling - Implementation

- ► The re-sampling approach was repeated 10,000 times
 - Running Rmpi on the New Zealand eScience Infrastructure Intel Pan Cluster
 - ▶ 1652 pathways were tested for enrichment in 10,000 simulated samples
- riangleright These were used to generate a null distribution of expected $χ^2$ values
 - for each Reactome pathway
 - for the SLIPT predictions and the intersection with experimental screen genes
- Empirical p-value estimates were derived from:
 - ▶ the proportion of the 10,000 null χ^2 values ≤ the observed χ^2 value
 - then adjusted (FDR) for multiple tests by the number of pathways
- Also preformed for the size of sampled intersections to test enrichment or depletion of siRNA candidate genes in SLIPT predictions

Re-sampling - Results (Adjusted p-value)

Re-sampling -Results (Key Pathways)

SLIPT

Reactome pathway	emp p-val	(fdr)
G-protein activation	< 0.0001	<0.0005
PI3K Cascade	< 0.0001	<0.0005
Cell Cycle	< 0.0001	<0.0005
Chromatin modifying enzymes	< 0.0001	<0.0005
DNA Repair	< 0.0001	< 0.0005
WNT mediated activation of DVL	< 0.0001	< 0.0005
ERK activation	< 0.0001	<0.0005
Immune System	< 0.0001	< 0.0005
Nonsense-Mediated Decay (NMD)	< 0.0001	< 0.0005
3' -UTR-mediated translational regulation	< 0.0001	< 0.0005
SRP-dependent cotranslational protein targeting to membrane	< 0.0001	< 0.0005
Transport of fatty acids	< 0.0001	< 0.0005
Regulatory RNA pathways	0.0004	0.002052
RHO GTPase Effectors	0.0008	0.004025
Class A/1 (Rhodopsin-like receptors)	0.0011	0.005381
DNA Replication	0.0022	0.010166
GPCR ligand binding	0.0022	0.010166
Synthesis of DNA	0.0022	0.010166

SLIPT + siRNA

AKT-mediated inactivation of FOXO1A	emp p-val	(fdr)
Eukaryotic Translation Elongation	< 0.0001	<0.00025
Cell Cycle	< 0.0001	<0.00025
Chromatin modifying enzymes	< 0.0001	<0.00025
DNA Repair	< 0.0001	<0.00025
EGFR downregulation	<0.0001	<0.00025
ERK/MAPK targets	< 0.0001	<0.00025
RAF/MAP kinase cascade	< 0.0001	<0.00025
Regulation of Apoptosis	<0.0001	<0.00025
Stabilization of p53	<0.0001	<0.00025
Transcriptional activation of p53 responsive genes	<0.0001	<0.00025
3' -UTR-mediated translational regulation	<0.0001	<0.00025
Nonsense Mediated Decay (NMD)	<0.0001	<0.00025
AKT-mediated inactivation of FOXO1A	<0.0001	<0.00025
RHO GTPases activate PKNs	0.0006	0.00147442
Adaptive Immune System	0.0099	0.02280741
Innate Immune System	0.0116	0.02656936
G protein gated Potassium channels	0.0137	0.03119810
HDACs deacetylate histones	0.0218	0.04701088

Re-sampling -Intersect Size

Resampling - Compare to enrichment

SLIPT

SLIPT + siRNA

Resampling - Compare to enrichment

SLIPT

Reactome pathway	gsdb(fdr)	emp(fdr)
Eukaryotic Translation Elongation	2.10E-37	<0.0005
Influenza Viral RNA Transcription and Replication	6.80E-28	< 0.0005
L13a-mediated translational silencing of Ceruloplasmin	2.20E-27	<0.0005
expression		
3' -UTR-mediated translational regulation	2.20E-27	<0.0005
Cap-dependent Translation Initiation	1.10E-23	<0.0005
SRP-dependent cotranslational protein targeting to membrane	3.20E-23	<0.0005
Translation	3.40E-19	<0.0005
Influenza Infection	4.50E-17	<0.0005
Interferon gamma signaling	4.90E-07	0.025004
Generation of second messenger molecules	9.50E-06	0.036759
GPCR ligand binding	1.90E-05	0.010256
Class A/1 (Rhodopsin-like receptors)	0.00017	0.004013
Integrin cell surface interactions	0.014	0.033305
Rho GTPase cycle	0.05	0.032987
Interferon Signaling	0.14	<0.0005
Innate Immune System	0.2	0.008019
Activation of G protein gated Potassium channels	0.25	0.045067
G protein gated Potassium channels	0.25	0.045067
PI3K Cascade	1	<0.0005
Cell Cycle	1	<0.0005
ERK/MAPK targets	1	<0.0005

SLIPT + siRNA

Reactome pathway	gsdb(fdr)	emp(fdr)
Eukaryotic Translation Elongation	1.20E-23	<0.00025
L13a-mediated translational silencing of Ceruloplasmin	1.30E-17	<0.00025
expression		
3' -UTR-mediated translational regulation	1.30E-17	<0.00025
Influenza Viral RNA Transcription and Replication	1.30E-17	<0.00025
SRP-dependent cotranslational protein targeting to membrane	4.20E-16	<0.00025
Cap-dependent Translation Initiation	1.20E-15	<0.00025
Translation	2.00E-12	<0.00025
Influenza Infection	1.80E-10	<0.00025
Regulation of Complement cascade	0.093	0.021758
Signaling by NOTCH3	0.14	0.027369
P2Y receptors	0.14	0.018276
G alpha (s) signalling events	0.19	0.004417
HIV Infection	1	<0.00025
Cell Cycle	1	<0.00025
DNA Replication Pre-Initiation	1	<0.00025
Cell Cycle, Mitotic	1	<0.00025
Synthesis of DNA	1	0.004417
Chromosome Maintenance	1	0.006534
Regulatory RNA pathways	1	0.011778
APC/C-mediated degradation of cell cycle proteins	1	0.025554
Apoptosis	1	0.041569

Discussion - Computational Challenges

- Each re-sample is independent
 - ► Simple to compute in embarrassingly parallel with Rmpi (snow R package)
- The methodology leads to a trade-off
 - Compute enrichment for every pathway for each re-sample (memory intensive)
 - Re-sample for testing one pathway many times, then do the next one... (CPU-time intensive)
- NeSI has enabled many more iterations (generating more accurate p-value estimates)
 - Especially important when multiple testing
 - Would not have been feasible to test every pathway without access to HPC
 - Simple to scale up iterations or cores
 - ▶ 10,000 Reps takes ~100min on 72 cores, 6Gb/core

Discussion - Biological Interpretations

- Screening for SL needs to unexpected results in previous studies
 - Within-pathway SL
 - Between-pathway SL
 - Many molecules have unknown function or multiple functions
- Experimental screens and Bioinformatics analysis won't detect the same genes
 - Some genes are easier to knockout in cell models (without killing all cells)
 - Genetic variation and tissue environment (e.g., immune) not tested in cell lines.
- We need to understand the cell at a functional level for studying cancer
 - Many systems are dysregulated in cancer
 - Cancer cells re-wire as they develop and acquire drug resistance

Discussion - Biological Context

3126

Translation, 3' UTR regulation, non-sense mediated decay, SRPdependent co-translate, Immune, Cell Cycle, Chromatin Modifiers

450

Nicotinamide, Serotonin, GPCR Signal, $G\alpha(s)$, GPCR Downstream, Innate Immune, GPCR ligand, Cytochrome P_{450} , GPCR (B/2)

1317

CaMK/CREB, Protein Metabolism, 3' UTR Regulation, non-sense mediated decay, Translation, Phospholipase C, Calmodulin

Translation: Gene Expression and Cell Growth
Too high = cancer; Too low = cell death

Discussion - Clinical Relevance

- Applications in cancer medicine
 - ► Targeted therapy against difficult molecular drivers of cancer
 - Inactivated
 - Similar to healthy (wildtype) variants
 - Chemoprevention / HDGC
 - ▶ Lower side effects would enable use against early stage cancer
 - ▶ Including preventative use in hereditary cancers before they're detected in clinic
 - Biomarkers
 - ► Clinical decisions based on molecular/genomic data
 - Anticipate drug resistance signatures and combination therapy (higher order interactions)
- Precision / Personalised / Genomics medicine / buzzword of the year

Discussion - Statistical Analysis

- Conservative analysis: corrected for multiple tests (false discovery rate)
 - ▶ Pathways or genes are not always independent
- Needs validation and function testing before clinical application
 - Cell line or mouse model
- Potentially vastly more effective / cheaper than experimental screens alone
 - ▶ If used in combination to select drug candidates
- Biologically consistent findings across pathways are promising
- Results support findings in experimental studies

Future Directions

- Technical
 - Refined prediction methods
 - Simulations and modelling
 - ► Include other data types or known pathway structure
- Biological
 - ► Mechanisms (molecular or cellular level)
 - Drug target triage and pre-clinical drug development
 - Combinations of mutations (e.g, CDH1, TP53, & PIK3CA)

Conclusions

- SL predictions across the human genome are valuable for cancer biologists
- Pathway predictions and candidate drug targets against CDH1 in cancer have been found
 - Continues to inform experimental studies and drug development
- NeSI has enabled much of this work, particularly scaling up to genomics analysis and permutation re-sampling
 - ▶ Has led to statistical techniques and biological research questions not otherwise possible
- Demonstrates genomics data is a resource for biologists
 - Plenty of unexplored potential
 - Requires training next generation of researchers to utilise it
 - We need to work together (interdisciplinary skills)

Acknowledgements

- Supervisors: Mik Black & Parry Guilford
- Advisory committee: Anita Dunbier & Michael Lee
- Experimental data and advice: Cancer Genetics Lab, Bryony Telford, Augustine Chen
- ► Helpful discussion, advice, tech support, and proofreading: Mik's group, collaborators, and an amazing number of people at conferences, on the web, or social media
- ► For making this project possible: data sources, software sources, patients, clinicians, the open science movement, and the StackOverflow/StackExchange community
- Funding source: University of Otago Postgraduate Tassel Scholarship in Cancer Research
- ► Compute resources: New Zealand eScience Infrastructure (NeSI) and Biochemistry Dept
- ► Conference funding: REANNZ, NeSI, NZGL

