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Genetics - Synthetic Lethality
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Genetics - Synthetic Lethality

» Cell death due to inactivation of two (or more) non-essential genes
» Loss of a shared function being lethal implies functional redundancy

» Conserved between pathways more than individual genes
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viable lethal

(cc) AthenaPendergrass Wikipedia



Genetics - Synthetic Lethality

» Cell death due to inactivation of two (or more) non-essential genes

» Loss of a shared function being lethal implies functional redundancy

» Conserved between pathways more than individual genes
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Normal cells Normal cells Cancer cells

Gene B Gene A Gene B
\ / \ / \ (cancer mutation)
Cell survival Cell survival Cellular death

Rehman et al. (2010) Nature Reviews Clinical Oncology 7, 718-724



Genomics - Targeted Cancer Therapy

» An appealing strategy for anti-cancer drug design
» Specificity against genetic abnormality (even loss of function)
» We expect low adverse effects compared to chemotherapy
» Enables wider use of targeted therapy

» Drugs specific against molecular changes identified by Genetics/
Genomics

» Has been shown to be a clinically applicable strategy

» e.g., olaparib (BRCA mutation, PARP inhibitors) successful clinical trials




Cancer Genomics - Data Sources
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Genomic Screen - Experimental Data

» Until recently limited to a candidate approach

» Based on known functions and studies in other species

» Screening for Synthetic Lethality has become a popular in cancer cell culture
» Uses “ RNA interference” to knockout gene expression: screening for mutant-specific cell death
» Combined with drug compound testing for cancer drug screening
» Other refined gene knockdown approaches in development (e.g., CRISPR ‘genome editing’)

» Experimental screening (and validation) is costly, laborious, and prone to false positives

» We are investigating bioinformatics analysis to assist the drug target triage process



E-cadherin (CDHT) - Example Gene

» E-Cadherin (encoded by the CDH1 gene) is a cell-to-cell signalling and
cell structure protein

» Tumour suppressor (loss linked to cancer onset and progression)

» Hereditary Diffuse Gastric Cancer (Familial cancer syndrome)
» High risk and early onset diffuse gastric cancer and lobular breast cancer
» Current monitoring or surgery options have significant risk of patient harm

» The Cancer Genetics Lab has an ongoing project aiming to design safe
drugs suitable for early stage treatment and preventative use in
outwardly healthy HDGC patients / mutation carriers




E-cadherin (CDH1) - Example Gene
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SLIPT - Prediction Method

» Synthetic Lethal Interaction Prediction Tool (SLIPT)
» Score patients as low, medium or high expression for each gene (3-quantiles)
» Chi-Square test gives significance for relationship between expression of 2 genes
» Correct p-values for multiple tests (False Discovery Rate)

» Score Synthetic Lethality as directional changes in expression as shown below:
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Methods - Pathway Prediction Workflow

» 1) Source data from database (and check for quality): TCGA/ICGC data portals

.

» 2) Predict Synthetic Lethal gene partners: SLIPT for CDH1 in breast cancer

.

» 3) Gene Set over-representation analysis: ReactomeDB pathway enrichment




SLIPT - Enriched Pathways for CDH1
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Results so far

» Synthetic Lethal interactions are common across the Human Genome
(used NeSl Pan cluster)

» Consistent with scale-free networks observed in other species

» Expression of synthetic lethal partners across a patient cohort divides
into several correlated clusters with:

» Distinct functions .
» Highly expressed in different patient groups \I/




SLIPT - Comparison to siRNA Genes

exprSLIPT v. siRNA
Chi-Sq = 2.69
p-val = 0.101
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Resampling - Permutations for Pathways

» The intersection between SLIPT and siRNA results is enriched
for many of the same pathways as in the experimental siRNA
data

» Even though this differs greatly from the SLIPT results overall
» Is this good news?
» Or would we expect this by chance?

» Can we explain why they overlap so poorly with siRNA hits?

» Permutation / Bootstrapping / Re-Sampling

» The idea is to randomly sample / shuffle genes and to generate a
test statistic distribution we would expect by chance

» Then we can test whether genes are behaving as expected by
chance or are we surprised by them



Resampling - Permutations for Pathways

» A random sample of the total observed size for predicted genes
» e.g, 3576 genes predicted

» The intersection with siRNA candidates is derived from the random sample
» Does not assume that the size of the intersection is fixed at the observed size
» Size is not predetermined as and generates an expected intersection size
» Observed intersection of 450 genes

» Test each sample for pathway enrichment
» e.g., all 1652 Reactome pathways

» Rinse, repeat to generate an expect distribution (null hypothesis)



Re-sampling - Implementation
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» The re-sampling approach was repeated 10,000 times

» Running Rmpi on the New Zealand eScience Infrastructure Intel Pan Cluster

» 1652 pathways were tested for enrichment in 10,000 simulated samples
» These were used to generate a null distribution of expected y? values

» for each Reactome pathway

» for the SLIPT predictions and the intersection with experimental screen genes
» Empirical p-value estimates were derived from:

» the proportion of the 10,000 null x? values < the observed x? value

» then adjusted (FDR) for multiple tests by the number of pathways

» Also preformed for the size of sampled intersections to test enrichment o
depletion of siRNA candidate genes in SLIPT predictions



Re-sampling - Results (Adjusted p-value)

p-value density (empirical sampling 2) for Reactome Pathways (FDR)




Re-sampling -Results (Key Pathways)

SLIPT

Reactome pathway emp p-val (fdr)

G-protein activation

PI3K Cascade

Cell Cycle

Chromatin modifying enzymes

DNA Repair

WNT mediated activation of DVL

ERK activation

Immune System

Nonsense-Mediated Decay (NMD)

3' -UTR-mediated translational regulation
SRP-dependent cotranslational protein targeting to membrane
Transport of fatty acids

Regulatory RNA pathways

RHO GTPase Effectors

Class A/1 (Rhodopsin-like receptors)

DNA Replication

GPCR ligand binding

Synthesis of DNA

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
0.0004
0.0008
0.0011
0.0022
0.0022
0.0022

<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
0.002052
0.004025
0.005381
0.010166
0.010166
0.010166

SLIPT + siRNA

emp p-val (fdr)
<0.0001 <0.00025

Eukaryotic Translation Elongation

Cell Cycle <0.0001 <0.00025
Chromatin modifying enzymes <0.0001 <0.00025
DNA Repair <0.0001 <0.00025
EGFR downregulation <0.0001 <0.00025
ERK/MAPK targets <0.0001 <0.00025
RAF/MAP kinase cascade <0.0001 <0.00025
Regulation of Apoptosis <0.0001 <0.00025
Stabilization of p53 <0.0001 <0.00025
Transcriptional activation of p53 responsive genes <0.0001 <0.00025
3' -UTR-mediated translational regulation <0.0001 <0.00025
Nonsense Mediated Decay (NMD) <0.0001 <0.00025
AKT-mediated inactivation of FOXO1A <0.0001 <0.00025
RHO GTPases activate PKNs 0.0006 0.00147442
Adaptive Immune System 0.0099 0.02280741
Innate Immune System 0.0116 0.02656936
G protein gated Potassium channels 0.0137 0.03119810

HDACs deacetylate histones 0.0218 0.04701088




Re-sampling -Intersect Size

SLIPT SLIPT + siRNA
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Resampling - Compare to enrichment

SLIPT SLIPT + siRNA

gsdb enrichment permutation gsdb enrichment permutation

488

985 613




Resampling - Compare to enrichment

SLIPT

Reactome pathway
Eukaryotic Translation Elongation
Influenza Viral RNA Transcription and Replication

L13a-mediated translational silencing of Ceruloplasmin
expression

3' -UTR-mediated translational regulation
Cap-dependent Translation Initiation

SRP-dependent cotranslational protein targeting to membrane

Translation

Influenza Infection

Interferon gamma signaling

Generation of second messenger molecules
GPCR ligand binding

Class A/1 (Rhodopsin-like receptors)
Integrin cell surface interactions

Rho GTPase cycle

Interferon Signaling

Innate Immune System

Activation of G protein gated Potassium channels
G protein gated Potassium channels

PI3K Cascade

Cell Cycle

ERK/MAPK targets

gsdb(fdr)
2.10E-37
6.80E-28
2.20E-27

2.20E-27
1.10E-23
3.20E-23
3.40E-19
4.50E-17
4.90E-07
9.50E-06
1.90E-05
0.00017
0.014
0.05
0.14

0.2

0.25
0.25

1

1

1

emp(fdr)
<0.0005
<0.0005
<0.0005

<0.0005
<0.0005
<0.0005
<0.0005
<0.0005
0.025004
0.036759
0.010256
0.004013
0.033305
0.032987
<0.0005
0.008019
0.045067
0.045067
<0.0005
<0.0005
<0.0005

SLIPT + siRNA

Reactome pathway gsdb(fdr) emp(fdr)

Eukaryotic Translation Elongation 1.20E-23 <0.00025
L13a-mediated translational silencing of Ceruloplasmin 1.30E-17 <0.00025
expression

3' -UTR-mediated translational regulation 1.30E-17 <0.00025
Influenza Viral RNA Transcription and Replication 1.30E-17 <0.00025
SRP-dependent cotranslational protein targeting to membrane 4.20E-16 <0.00025
Cap-dependent Translation Initiation 1.20E-15 <0.00025
Translation 2.00E-12 <0.00025
Influenza Infection 1.80E-10 <0.00025
Regulation of Complement cascade 0.093 0.021758
Signaling by NOTCH3 0.14 0.027369
P2Y receptors 0.14 0.018276
G alpha (s) signalling events 0.19 0.004417
HIV Infection 1 <0.00025
Cell Cycle 1 <0.00025
DNA Replication Pre-Initiation 1 <0.00025
Cell Cycle, Mitotic 1 <0.00025
Synthesis of DNA 1 0.004417
Chromosome Maintenance 1 0.006534
Regulatory RNA pathways 1 0.011778
APC/C-mediated degradation of cell cycle proteins 1 0.025554
Apoptosis 1 0.041569




Discussion - Computational Challenges

» Each re-sample is independent
» Simple to compute in embarrassingly parallel with Rmpi (snow R package)
» The methodology leads to a trade-off
» Compute enrichment for every pathway for each re-sample (memory intensive)
» Re-sample for testing one pathway many times, then do the next one... (CPU-time intensi
» NeSl has enabled many more iterations (generating more accurate p-value estimates)
» Especially important when multiple testing
» Would not have been feasible to test every pathway without access to HPC

» Simple to scale up iterations or cores
» 10,000 Reps takes ~100min on 72 cores, 6Gb/core



Discussion - Biological Interpretations

» Screening for SL needs to unexpected results in previous studies
» Within-pathway SL
» Between-pathway SL

» Many molecules have unknown function or multiple functions
» Experimental screens and Bioinformatics analysis won’t detect the same gene
» Some genes are easier to knockout in cell models (without killing all cells)
» Genetic variation and tissue environment (e.g., immune) not tested in cell lines
» We need to understand the cell at a functional level for studying cancer

» Many systems are dysregulated in cancer

» Cancer cells re-wire as they develop and acquire drug resistance



Discussion - Biological Context
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Discussion - Clinical Relevance

» Applications in cancer medicine

» Targeted therapy against difficult molecular drivers of cancer
» Inactivated

» Similar to healthy (wildtype) variants
» Chemoprevention / HDGC

» Lower side effects would enable use against early stage cancer

» Including preventative use in hereditary cancers before they’re detected in clinic

» Biomarkers
» Clinical decisions based on molecular/genomic data

» Anticipate drug resistance signatures and combination therapy (higher order interacti

» Precision / Personalised / Genomics medicine / buzzword of the year




Discussion - Statistical Analysis

>

>

>

>

Conservative analysis: corrected for multiple tests (false discovery rate)
» Pathways or genes are not always independent

Needs validation and function testing before clinical application
» Cell line or mouse model

Potentially vastly more effective / cheaper than experimental screens alone
» If used in combination to select drug candidates

Biologically consistent findings across pathways are promising

Results support findings in experimental studies




Future Directions

» Technical
» Refined prediction methods
» Simulations and modelling
» Include other data types or known pathway structure
» Biological
» Mechanisms (molecular or cellular level)
» Drug target triage and pre-clinical drug development
» Combinations of mutations (e.g, CDH1, TP53, & PIK3CA)




Conclusions

» SL predictions across the human genome are valuable for cancer biologists

» Pathway predictions and candidate drug targets against CDH1 in cancer have been found
» Continues to inform experimental studies and drug development

» NeSl has enabled much of this work, particularly scaling up to genomics analysis and
permutation re-sampling

» Has led to statistical techniques and biological research questions not otherwise possible
» Demonstrates genomics data is a resource for biologists

» Plenty of unexplored potential

» Requires training next generation of researchers to utilise it

» We need to work together (interdisciplinary skills)
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